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Abstract: We present an economical theory of natural electroweak symmetry breaking,

generalizing an approach based on deconstruction. This theory is the smallest extension

of the Standard Model to date that stabilizes the electroweak scale with a naturally light

Higgs and weakly coupled new physics at TeV energies. The Higgs is one of a set of pseudo

Goldstone bosons in an SU(5)/SO(5) nonlinear sigma model. The symmetry breaking scale f

is around a TeV, with the cutoff Λ<∼ 4πf ∼ 10 TeV. A single electroweak doublet, the “little

Higgs”, is automatically much lighter than the other pseudo Goldstone bosons. The quartic

self-coupling for the little Higgs is generated by the gauge and Yukawa interactions with a

natural size O(g2, λ2
t ), while the top Yukawa coupling generates a negative mass squared

triggering electroweak symmetry breaking. Beneath the TeV scale the effective theory is

simply the minimal Standard Model. The new particle content at TeV energies consists of

one set of spin one bosons with the same quantum numbers as the electroweak gauge bosons,

an electroweak singlet quark with charge 2/3, and an electroweak triplet scalar. One loop

quadratically divergent corrections to the Higgs mass are cancelled by interactions with these

additional particles.



1. Introduction

The Standard Model provides an excellent effective field theory description of almost all

particle physics experiments. But at what scale Λ does this effective description break down?

In the Standard Model the electroweak symmetry breaking scale, of order MW , is set by

the Higgs mass parameter m2
H . There is no symmetry reason why m2

H/Λ
2 should be small,

and since this ratio receives quantum corrections of order αW /π, a reasonable expectation is

that Λ<∼ a few TeV [1]. Consequently we expect new physics at the TeV scale that protects

the electroweak scale from large radiative corrections. Candidates for this physics include

technicolor, a low fundamental quantum gravity scale and supersymmetry. Supersymmetry

is especially popular as it provides a weakly coupled description of TeV scale physics in

addition to stabilizing a light Higgs, as seems favored by precision electroweak data. While

these options have been vigorously explored over the past several decades, none have yet

been confirmed experimentally. Consequently it is important to explore qualitatively new

ideas for natural electroweak symmetry breaking, especially those that are weakly coupled

and stabilize a light Higgs.

Why should the Higgs be light? An early dream [2, 3], dating from the seventies, was

the construction of the Higgs as a pseudo-Goldstone boson. The first realistic attempt along

these lines was made in the eighties: the Georgi-Kaplan Composite Higgs [4–8]. In these

models the Higgs is the pseudo-Goldstone boson of a nonlinearly realized approximate global

symmetry, analogous to the pions and kaons. Provided that f , the analog of the pion decay

constant, is much larger than the electroweak symmetry breaking scale, the minimal Standard

Model with a light Higgs is a good effective description of electroweak symmetry breaking.

Unfortunately in the Georgi-Kaplan model a hierarchy between f and the electroweak scale

MW is possible only by fine tuning parameters, and so this theory does not provide a natural

stabilization of the weak scale.

In the last year, inspired by “dimensional deconstruction” [12,13], the Higgs as a pseudo-

Goldstone boson has been successfully realized [14,15]. These models are characterized by a

“theory space”, summarizing the gauge and global symmetries of the theory. The physics is

described by a nonlinear sigma model in which a special subset of the pseudo-Goldstone bosons

are naturally light, despite having gauge, Yukawa, and self-interactions of order one [14].

These models have a number of global symmetries, any one of which is sufficient to

ensure a massless Higgs. These symmetries are only approximate, explicitly broken by gauge,

Yukawa and scalar couplings. However each such coupling alone preserves enough of the global

symmetry to forbid a Higgs mass. Quadratically divergent corrections to the Higgs mass arise

only at multi-loop order, when several such interactions act in concert, making the small

Higgs mass natural. Such exceptionally light pseudo-Goldstone bosons were dubbed “little

Higgses” [15]. In a companion paper [16] we present the simplest theory space describing a

little Higgs that naturally triggers electroweak symmetry breaking.

In this paper we show that the little Higgs phenomenon is independent of theory space,

arising in nonlinear sigma models with no obvious nontrivial theory space description. This
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allows us to realize a little Higgs in the simplest possible way, arising from an SU(5)/SO(5)

nonlinear sigma model. The spectrum below a TeV is as economical as possible, consisting of

only the minimal Standard Model with a single light Higgs. This Higgs is a pseudo-Goldstone

boson whose decay constant f is of order a TeV. At the TeV scale a small number of additional

scalars, vector bosons and quarks cancel the one loop quadratic divergence in the Higgs mass

without fine tuning or supersymmetry. These additional degrees of freedom represent the

smallest extension of the Standard Model to date stabilizing the weak scale with a light

Higgs and perturbative physics at TeV energies. The cutoff of this theory can be as high as

4πf ∼ 10 TeV, where the nonlinear sigma model becomes strongly coupled. The SU(5) →
SO(5) symmetry breaking can easily arise from fermion condensation through technicolor-

like strong interactions [8]. However, unlike technicolor, the new strong interactions need not

appear until a scale of order 10 TeV, with small impact on precision electroweak parameters.

2. Requirements

Our goal is to realize the Higgs as the pseudo-Goldstone boson of a broken symmetry in a

way which ensures that its mass is not quadratically sensitive to the cutoff at one loop order.

This little Higgs will then be weakly coupled up to energies one loop factor above the weak

scale, around 10 TeV.

We begin by assuming that the Higgs is part of a pseudo-Goldstone multiplet parameter-

izing a coset space G/H , with the decay constant, f , on the order of a TeV. For phenomeno-

logical purposes, the origin of this symmetry breaking pattern is irrelevant at energies below

the cutoff scale Λ ∼ 4πf where additional UV physics must enter. The sigma model does not

Higgs the electroweak group at the scale Λ, so the subgroup H should contain SU(2)×U(1).

As in the Standard Model, the electroweak gauge interactions will näıvely induce a one loop

quadratically divergent mass for the Higgs doublet. To avoid this we use a mechanism famil-

iar from models of deconstruction: We assume that G contains a weakly gauged subgroup

consisting of two copies of SU(2) × U(1): G ⊃ G1 × G2 = [SU(2)× U(1)]2. Each of the

Gi must commute with a different subgroup of G that acts non-linearly on the Higgs. The

combination of both weak gauge interactions breaks all global symmetries which act on the

Higgs, and when both are included the Higgs ceases to be an exact Goldstone boson. The

quadratically divergent contributions to the Higgs mass from gauge interactions must involve

both couplings, and hence first appear at two loops. In this case the Higgs mass squared is

radiatively stable with a cutoff of order 10 TeV .

Let us now look for a simple implementation of the above requirements. Since G contains

[SU(2)× U(1)]2 it must be at least rank 4. Also G must contain two different subgroups, each

of the form Gi ×Xi, i = 1, 2. Furthermore each Xi must contain an SU(2)× U(1) subgroup

with some Xi generators transforming like doublets. For instance, we might (and will) take

Xi = SU(3)i and G = SU(5). The doublet generators of the Xi should not lie entirely in

H . Assuming G = SU(5), an obvious candidate for H is SO(5), which contains the diagonal

sum of G1 and G2. With the symmetry breaking pattern SU(5)→ SO(5), the 14 Goldstone
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bosons decompose under the electroweak SU(2)× U(1) as

10 ⊕ 30 ⊕ 2±1/2 ⊕ 3±1 . (2.1)

The first two sets of bosons are removed by the Higgs mechanism when G1×G2 breaks to the

electroweak group. The next set are the little Higgs and its hermitian conjugate, and the last

set is an additional complex triplet. We shall see that the triplet acquires a TeV scale mass

at one loop from gauge interactions. The Higgs quartic self-coupling arises from integrating

out this massive triplet. Thus the triplet coupling to the little Higgs naturally cancels the

one loop quadratic divergence in the little Higgs mass from the Higgs self coupling.

Each of the Gi gauge groups commutes with a different SU(3) global symmetry subgroup

of SU(5). Examining one of these SU(3)× SU(2)×U(1) global-local product subgroups, we

see that the first three sets of Goldstone fields above (including the little Higgs) transform

non-linearly under the SU(3). Thus neither of the Gi alone can generate a potential for

the Higgs. The two gauge groups together however completely break all global symmetry

protecting the Higgs. Therefore Higgs potential terms must involve both gauge couplings and

a UV sensitive Higgs mass cannot be generated at one loop. The triplet mass is not protected

by any global symmetry and indeed receives a quadratically cutoff sensitive mass from the

gauge interactions at one loop. Hence below a TeV the sigma model contains a single Higgs

doublet and nothing else. At the TeV scale there is an additional triplet scalar, and four

gauge bosons: an electroweak triplet W ′±0, and a neutral electroweak singlet B′0.

3. The Model

Our minimal theory is based on an SU(5)/SO(5) non-linear sigma model, the same structure

considered in the original Composite Higgs models. Since this non-linear sigma model may

not be as familiar as the QCD chiral Lagrangian for pions, we describe it in some detail here.

The breaking of SU(5) → SO(5) guarantees 14 Goldstone bosons. In order to construct

the non-linear sigma model, it is convenient to imagine for a moment that this breaking

arises from a vacuum expectation value for a 5× 5 symmetric matrix Φ, which transforms as

Φ→ VΦV T under SU(5). A vacuum expectation value for Φ proportional to the unit matrix

then breaks SU(5) → SO(5). For later convenience, we use an equivalent basis where the

vacuum expectation value for the symmetric tensor points in the Σ0 direction where Σ0 is

Σ0 =




11

1

11


 . (3.1)

The unbroken SO(5) generators satisfy

TaΣ0 + Σ0T
T
a = 0 (3.2)
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while the broken generators obey

XaΣ0 − Σ0X
T
a = 0 . (3.3)

As usual, the Goldstone bosons are fluctuations about this background in the broken directions

Π ≡ πaXa, and can be parameterized by the non-linear sigma model field

Σ(x) = eiΠ/fΣ0e
iΠT /f = e2iΠ/fΣ0, (3.4)

where the last step follows from (3.3).

We now introduce the gauge and Yukawa interactions which explicitly break the global

symmetry. As stressed in the previous section, these are chosen to ensure an enhanced SU(3)

global symmetry in the limit where any of the couplings are turned off. We begin by gauging

a G1×G2 = [SU(2)×U(1)]2 subgroup of the SU(5) global symmetry. The generators of the

first G1 = SU(2)× U(1) are embedded into SU(5) as

Qa1 =

(
σa/2

)
, Y1 = diag(−3,−3, 2, 2, 2)/10 (3.5)

while the generators of the second SU(2)× U(1) are given by

Qa2 =

(

−σa∗/2

)
, Y2 = diag(−2,−2,−2, 3, 3)/10 . (3.6)

In the next section, we will see that the G1 × G2 gauge symmetry is broken to the

diagonal SU(2)× U(1) subgroup which we identify with the electroweak gauge symmetry. It

is therefore convenient to write the Goldstone boson matrix Π in terms of fields with definite

electroweak quantum numbers

Π =




h†√
2

φ†

h√
2

h∗√
2

φ hT√
2


 (3.7)

where h is the Higgs doublet, h = (h+, h0) and φ represents the triplet as a symmetric two

by two matrix, which transforms as a 31 under the electroweak group. We have ignored the

Goldstone bosons that are eaten in the Higgsing of [SU(2)× U(1)]2→ SU(2)× U(1).

These gauge interactions satisfy the requirements of the previous section. When the

couplings of G1 are turned off, there is an enhanced SU(3)1 global symmetry living in the

upper 3 × 3 block of SU(5); when the gauge interactions of G2 are turned off there is an

SU(3)2 global symmetry living in the lower 3× 3 block.

The tree-level Lagrangian for the model is given by

L = LK + Lt + Lψ (3.8)
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Here LK contains the kinetic terms for all the fields; Lt generates the top Yukawa coupling;

and Lψ generates the remaining small Yukawa couplings. In detail, LK includes the conven-

tional kinetic terms for the gauge fields and Fermions, as well as the leading two-derivative

term for the non-linear sigma model

f2

4
tr|DµΣ|2 (3.9)

where the covariant derivative of Σ is given by

DΣ = ∂Σ−
∑

j

{
igjW

a
j (QajΣ + ΣQaTj ) + ig′jBj(YjΣ + ΣY Tj )

}
. (3.10)

The gi, g
′
i are the couplings of the [SU(2)× U(1)]i groups. In order to introduce a large top

Yukawa coupling while avoiding the associated large quadratic divergence in the Higgs mass,

we add a pair of colored Weyl Fermions t̃, t̃c in addition to the usual third-family weak doublet

q3 = (t3, b3) and weak singlet u′3
c. It is convenient to group the doublet together with t̃ into

a row vector χ = (b3 t3 t̃). Lt is given by

Lt = λ1fεijkεxyχiΣjxΣkyu
′
3
c

+ λ2f t̃t̃
c + h.c. , (3.11)

where the indices i, j, k are summed over 1, 2, 3 and x, y are summed over 4, 5. This interaction

fulfills our requirements: the λ1 interaction preserves the SU(3)1 and breaks SU(3)2, while

λ2 does the converse. To see that Lt generates a top Yukawa coupling we expand Lt to first

order in the Higgs h:

Lt = λ1(q3h+ f t̃)u′3
c

+ λ2f t̃t̃
c + · · · . (3.12)

Clearly t̃ marries one linear combination of u′3
c and t̃c to become massive. Integrating out

this heavy quark, the remaining combination uc3 has the desired Yukawa coupling to q3

λt q3h u
c
3, where λt =

λ1λ2√
λ2

1 + λ2
2

. (3.13)

The mixing of the top quark with vector-like Fermions at the TeV scale is similar to

Frogatt-Nielsen models of flavor [9] and the top see-saw [10, 11]. Finally, the interactions in

Lψ encode the remaining Yukawa couplings of the Standard Model. These couplings are

small so that the 1-loop quadratically divergent contributions to the Higgs mass they induce

are negligible with a cutoff Λ ∼ 10 TeV. For the up sector we can take Lψ to have exactly

the same form as Lt, except that the t̃, t̃c fields are unnecessary. For the down and charged

lepton sector we use the same Lagrangian with Σ replaced by Σ∗.
The U(1) charges of the Fermions are chosen to ensure gauge invariance. As we will

see in the next section, the G1 × G2 symmetry is Higgsed to the diagonal Standard Model

SU(2)×U(1) gauge group, so the U(1) charges must be chosen to yield the correct Standard
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Model quantum numbers. We do not concern ourselves with cancellation of the G1 × G2

anomalies in this low energy effective theory, since there may be additional Fermions at

the cutoff which cancel the anomalies involving the broken subgroup. We insist only that

Standard Model anomalies cancel, since fermions in a chiral representation of the Standard

Model can have only weak scale masses. Notice also that our two U(1) generators Y1, Y2

are not orthogonal, but we have not included any kinetic mixing term between them. Any

mixing between the U(1)’s in our effective theory arises at loop level and is sufficiently small.

In this model our choice for the U(1)’s is dictated by the requirement that in the limit where

any one of the U(1)’s is turned off there is an SU(3) global symmetry. If we demand that

the two U(1)’s both fit inside the SU(5) global symmetry, the Y1, Y2 are fixed. It is easy to

add new U(1) factors that commute with the SU(5) global symmetry which allow Y1, Y2 to

be chosen orthogonal. Alternatively, enlarging to an SU(N)/SO(N) non-linear sigma model

allows sufficient room to embed two orthogonal U(1)’s in the SU(N) global symmetry while

still satisfying our requirements.

4. Radiative corrections and electroweak symmetry breaking

Since the gauge and Yukawa interactions explicitly break the global SU(5) symmetry, these

interactions will select a preferred alignment for Σ. To find the vacuum, we compute the

1-loop radiative potential for Σ from the gauge, scalar and Yukawa sectors.

First consider the gauge sector. The largest corrections come from 1-loop gauge quadratic

divergences, which are easily extracted from the quadratically divergent part of the Coleman-

Weinberg potential [17]:

Λ2

16π2
trM2

V (Σ) (4.1)

where M2(Σ) is the gauge boson mass matrix in a background Σ. M2
V (Σ) can be easily read

off from the covariant derivative for Σ (3.10), giving a potential

cg2
j f

4
∑

a

tr
[
(QajΣ)(QajΣ)∗

]
+ cg′j

2
f4 tr [(YjΣ)(YjΣ)∗] (4.2)

Here we have used Λ ∼ 4πf , and c is an O(1) constant whose precise value is sensitive to

the UV physics at the scale Λ. The presence of this quadratic divergence implies that the

Lagrangian (3.8) is incomplete: we must include all operators consistent with the symmetries

of the theory with natural sizes determined by näıve dimensional analysis [18–20]. At second

order in the gauge couplings and momenta (4.2) is the unique gauge invariant term transform-

ing properly under the global SU(5) symmetry. This potential is analogous to that generated

by electromagnetic interactions in the pion chiral Lagrangian, which shift the masses of π±

from that of the π0 [21]. For the pion masses, näıve dimensional analysis works beautifully.

Moreover, in analogy to the chiral Lagrangian, we assume that c is positive. This implies

that the vacuum is correctly aligned, the electroweak group remains unbroken by the sigma

model, and the triplet has a positive TeV sized mass mφ ∼ gf .
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To find the Higgs potential we expand the Lagrangian (4.2) in the pseudo-Goldstone fields.

The form of the potential is determined by the global symmetry transformation properties of

the Higgs and triplet fields. The G1 gauge interactions leave the SU(3)1 symmetry invariant,

part of which acts on the Higgs and triplet fields as

hi → hi + εi + · · · (4.3)

φij → φij − i(εihj + εjhi) + · · · (4.4)

while G2 leaves SU(3)2 symmetry invariant, and acts as

hi → hi + ηi + · · · (4.5)

φij → φij + i(ηihj + ηjhi) + · · · . (4.6)

Hence to quadratic order in φ and quartic order in h the potential is

c(g2
1 + g′1

2
)f2|φij +

i

2f
(hihj + hjhi)|2 + c(g2

2 + g′2
2
)f2|φij −

i

2f
(hihj + hjhi)|2 (4.7)

As previously claimed the gauge interactions induce a mass for the triplet of order gf , while

the little Higgs remains massless.

There is also a quadratically divergent Coleman-Weinberg potential generated by the

Fermion loop, which requires the inclusion of the operator

−c′λ2
1ε
wxεyzε

ijkεkmnΣiwΣjxΣ∗myΣ∗nz + h.c. (4.8)

This operator is SU(3)1 symmetric, and therefore generates a potential of the same form as

the first term in (4.7), with coefficient −c′λ2
1. As long as c(g2

1 + g′1
2 + g2

2 + g′2
2)− c′λ2

1 > 0, the

triplet mass squared remains positive. At energies beneath the triplet mass, we can integrate

this particle out and get a quartic potential for the Higgs

λ(h†h)2, where λ = c
(g2

1 + g′1
2 − c′/cλ2

1)(g2
2 + g′2

2)

g2
1 + g′1

2 − c′/cλ2
1 + g2

2 + g′2
2 (4.9)

As advertised the interactions combine to give the Higgs a quartic potential determined by

gauge and Yukawa couplings, and no mass term.

The remaining part of the vector boson contribution to the Coleman-Weinberg potential

is

3

64π2
trM4

V (Σ) log
M2
V (Σ)

Λ2
. (4.10)

This gives a logarithmically enhanced positive Higgs mass squared

3

64π2

{
3g2M ′W

2
log

Λ2

M ′W
2

+ g′2M ′B
2

log
Λ2

M ′B
2

}
(4.11)
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where M ′W is the mass of the heavy SU(2) triplet of gauge bosons and M ′B is the mass of the

heavy U(1) gauge boson.

There is a similar Coleman-Weinberg potential from the scalar self-interactions in (4.2)

and in (4.8) which also give logarithmically enhanced positive contributions to the Higgs mass

squared:

λ

16π2
M2
φ log

Λ2

M2
φ

(4.12)

where Mφ is the triplet scalar mass.

The remaining part of the Fermion loop contribution to the Coleman-Weinberg potential

is

− 3

16π2
tr
(
Mf(Σ)M †f(Σ)

)2
log

Mf (Σ)M †f(Σ)

Λ2
(4.13)

where Mf(Σ) is the fermion mass matrix in a background Σ. This potential gives a logarith-

mically enhanced, negative contribution to the Higgs mass squared

−3λ2
t

8π2
m′2 log

Λ2

m′2
(4.14)

where m′ is the mass of the heavy fermion. This can dominate over the positive gauge and

scalar contributions, triggering electroweak symmetry breaking.

What is the mass of the physical Higgs in this model? The Higgs mass is determined

by the Higgs quartic coupling λ, which receives significant contributions from the gauge

interactions (4.9) and from the operator (4.8). Both of these contributions are proportional

to unknown coefficients c, c′ of order one, encoding information about the UV physics. We

can obtain a more predictive theory for the Higgs mass through an alternative model for the

top Yukawa coupling. We introduce fermions in complete SU(5) multiplets, transforming as

(5, 3) and (5, 3̄) under SU(5)×SU(3)color and coupling to the Σ field in an SU(5) symmetric

fashion. Such multiplets might be expected in strongly coupled theories. The left handed

top and bottom are a mixture of a component of a (5, 3) multiplet and an additional quark

doublet field q ∼ (t, b) and the anti-top is a similar mixture of a component of the (5, 3̄) field

and an SU(5) singlet field tc. We break the SU(5) symmetry only through explicit fermion

mass terms connecting the q and tc to the SU(5) multiplet fermions with the appropriate

quantum numbers. This form of symmetry breaking is soft enough to not induce quadratic

divergences at one loop, and so the gauge contribution dominates the Higgs quartic potential.

In this case the Higgs mass is parametrically of order the Z mass, mH ∼MZ !

5. Precision Electroweak tests

New physics which couples to the Higgs and gauge bosons is constrained by precision elec-

troweak measurements, which agree well with the predictions of the minimal Standard Model.
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The contributions of new, weakly coupled particles are generally suppressed by factors of

M2
W /M

2
new, unless the mass Mnew of the new particles is due to electroweak symmetry break-

ing, in which case the contributions of heavy particles to low energy physics do not decouple

and can be large, as occurs in technicolor theories [22–24]. In our case all the new couplings

are weak and all the new particle masses are symmetric under the electroweak interactions,

hence their loop contributions are of order (g2/(16π2))M2
W /(gf)2, i.e. of similar size to 2-loop

Standard Model corrections. Corrections of this size are typically smaller than the current

experimental uncertainties. The main effects on low energy observables will arise from tree-

level exchange of heavy particles, which give effects comparable to Standard Model loops.

For instance the φ scalar will have a custodial SU(2) breaking trilinear coupling with the

Higgs of the form hφh. Integrating out the φ at tree level will induce a custodial SU(2)

violating dimension six operator, which contributes to the T (or ρ) parameter. Fortunately,

the coefficient of the trilinear coupling is not expected to be large. The gauge contribution is

proportional to g2
1 − g2

2 + g′1
2 − g′22 while the Fermion contribution is proportional to −c′λ2

1.

This would be absent in the complete SU(5) multiplet model of the top mass. Another

source of tree level corrections is due to the exchange of the heavy gauge bosons, which have

tree-level couplings to Fermions. For instance, W ′ exchange can contribute to muon decay

and affect the muon lifetime. Similar studies of the contributions of heavy gauge bosons to

precision electroweak corrections give lower bounds on the masses as tight as 3 TeV [25]. The

bounds would be weaker in the present case if, for instance, the two SU(2)’s have unequal

couplings and the light fermions only transform under the more weakly coupled of the two

SU(2) gauge groups. We leave a study of the effects on precision electroweak observables for

future work.

6. UV Completions and the Resurrection of Strong Dynamics for EWSB

So far, we have contented ourselves with an effective theory description of our non-linear

Sigma model beneath the scale Λ ∼ 10 TeV, but it is interesting to contemplate a UV origin

for our physics. There is a straightforward UV completion into a linear sigma model, suitably

supersymmetrized to avoid quadratic divergences coming from above the scale Λ, with a

supersymmetry breaking scale ∼ 100 TeV. But it is fascinating that the essential features of

our model can arise from strong gauge dynamics at the scale Λ. Consider, an SO(N) gauge

theory with 5 Weyl Fermions Ψi in the fundamental representation of SO(N). When the

SO(N) coupling becomes strong, the Fermions condense as

〈ΨiΨj〉 ∼ Λ3Σij (6.1)

breaking SU(5)→ SO(5), where Λ is the SO(N) scale and the Σij parameterize the Goldstone

Bosons in an SU(5)/SO(5) non-linear Sigma model field. Just as in our effective Lagrangian

description, we can now weakly gauge a subgroup of the SU(5) global symmetry, and at low

energies, we have a little Higgs with an an exceptionally light mass mH ∼ (g2Λ/16π2), even

though it has large gauge coupling and a large quartic self-coupling of order g2. Unfortunately,
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because Y1, Y2 are not orthogonal, there will be logarithmically enhanced kinetic mixing

between them from a Ψ loop, which induces 1-loop quadratic divergences for the little Higgs

mass from the U(1) interactions. This minor annoyance can be avoided by slightly enlarging

the model. For example, 7 rather than 5 Weyl Fermions leads to an SU(7)/SO(7) model. In

this case we can weakly gauge a G1 × G2 = [SU(2)× U(1)]× SU(3) subgroup of the SU(7)

global symmetry, with the U(1) embedded as Y = diag(1, 1,−2, 0, 0, 0, 0). These charges

satisfy our requirements: the G1 couplings preserve an SU(4) global symmetry while the G2

coupling preserves a different SU(4) global symmetry. There is a triplet of little Higgses in

this model, consisting of a conventional Standard Model Higgs and charged singlet.

For a realistic model we still need to incorporate Fermion masses, most importantly the

large top Yukawa coupling to drive electroweak symmetry breaking. Therefore an ETC-like

mechanism is still likely needed to generate operators of the form of equation (3.11).

The construction of a little Higgs from strong dynamics resurrects the possibility that

strong dynamics play a role in EWSB while avoiding the traditional pitfalls of technicolor, and

greatly ameliorating the difficulties of extended technicolor. Technicolor and ETC are beset

by three major woes: excessively large correction to precision electroweak observables, such

as the S-parameter; excessively light pseudo-Goldstone bosons with electroweak quantum

numbers; and large flavor-changing neutral currents. Little Higgses eliminate the first two

problems: electroweak symmetry breaking is accomplished with a light weakly coupled Higgs,

and there are no large corrections to the S-parameter. The pseudo-Goldstone boson issue

is used to advantage: our little Higgs is the only excessively light pseudo-Goldstone boson

with electroweak quantum numbers! As for FCNCs, the higher scale for the strong dynamics

significantly relaxes the constraints, as we discuss in the next section.

7. Flavor Changing Neutral Currents

Strictly within our low-energy effective field theory, we do not have to worry about FCNC.

The only flavor-violating interactions beyond those in the SM Yukawa couplings involve the

top sector, and therefore there are no large FCNCs involving the light fermions. However,

in some UV completions, other, less benign spurions might be present. In order to address

FCNC issues we need to speculate about the UV origin of the spurions which give the quark

and lepton couplings to the Σ field.

As stressed in [26], in those UV completions of the deconstruction models in which the

light quark couplings to the sigma field arise from four Fermi interactions in the UV theory,

there may also be four Fermi interactions among light quarks, with coefficients proportional

to their Yukawa couplings. If the light quark four Fermi couplings are about the same size

as the couplings of the light quarks to the new fermions, then for Λ<∼ 75 TeV , some of the

resulting FCNCs could exceed the experimental bounds. Also discussed in [26] were ways to

ameliorate these effects, such as anomalous scaling.

Here we briefly mention some other scenarios in which one could explain the observed

suppression of FCNCs. If the sigma field is a condensate of strongly interacting fermions,
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and so our little Higgs is composite, one might imagine that the fermions are also composite,

with masses protected by approximate global symmetries [1]. It is then a simple matter to

postulate global symmetries and spurions which allow the necessary Yukawa couplings while

preventing excessive FCNC [27]. Another possibility is that the world is supersymmetric, with

supersymmetry broken at 100 TeV or so. Then scalars with masses of 100 TeV are natural.

If strongly coupled to the constituents giving rise to the nonlinear sigma fields and weakly

coupled to light quarks and leptons, 100 TeV scalars could mediate interactions leading to

acceptable fermion masses without excessive FCNCs [28–30].

8. Smoking Guns

We will not attempt an analysis of the experimental consequences of this model here, but

simply mention qualitative features of the most distinctive signals. Unlike in solutions to the

hierarchy problem involving extra dimensions, deconstructed extra dimensions, or supersym-

metry, the natural expectation for the mass of all new particles beyond the Standard Model is

of order a TeV. Unlike in technicolor, there is a weakly coupled light Higgs and no new strong

interactions below the cutoff. There are, however, several unique signatures for the discovery

of new particles at the LHC. The most unique feature of the SU(5)/SO(5) nonlinear sigma

model is the φ electroweak triplet scalar, which will appear as three nearly degenerate scalars

with charges 2, 1 and 0. For aspects of the phenomenology see [31–33]. The other distinctive

features of this model, shared with deconstruction models of electroweak symmetry breaking,

are the additional SU(2)× U(1) gauge bosons and charge 2/3 quarks.

Without specification of the UV physics above the cutoff, the Higgs potential and cou-

plings are determined at one loop in terms of 9 parameters of the effective theory below the

cutoff—these are g1,2, g
′
1,2, λ1,2, f, c and c′. Four combinations of these are determined from

α, sin2 θW , the top mass, and the Higgs vev, while the other five could be determined from

the Higgs mass, m′, M ′W , M ′B, and Mφ, or in principle, given sufficient precise data, from a

fit to electroweak observables. It is possible that the latter could give a prediction for the

masses of the new particles.

We have chosen to eliminate all 1-loop quadratic divergences in the Higgs mass squared

parameter. The apparent divergences in the low energy effective theory from the Standard

Model gauge bosons, top quark and Higgs scalar are cancelled by new particles of similar

statistics. As the masses of these new particles increase, the difference between the Standard

Model 1-loop contributions and that of these new particles grows, requiring fine tuning of the

Higgs mass squared parameter. Hence the masses of these new particles may be bounded by

requiring that this cancellation is not finely tuned. The cutoff dependence may be absorbed

into the counterterms c and c′. The logarithm might be as large as log(16π2) ∼ 5, however

to be conservative we will take it to be 1. The reasonable naturalness constraint that none of

the independent contributions in (4.11),(4.12),(4.14) exceed the absolute value of the Higgs

mass squared parameter by more than a factor of 10 (∼ 10% fine-tuning) gives upper bounds

on the new particle masses as a function of the physical Higgs mass. The new charge 2/3
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quark is the most constrained:

m′<∼ 2 TeV
( mH

200 GeV

)2
. (8.1)

Two dominant decay modes are the flavor changing neutral current T ′ → Zt, due to the mass

mixing of charge 2/3 quarks with different weak charges, and T ′ → ht. Using the expression

(3.13) for the top Yukawa coupling, we conclude that
√
λ2

1 + λ2
2 > 2λt. Since the mass of the

heavy quark is m′ =
√
λ2

1 + λ2
2 f , the naturalness bound on m′ in turn implies

f <∼ 1 TeV
( mH

200 GeV

)2
. (8.2)

Given the expectation that the couplings are all weak, (8.2) suggests that all the new particles

should have masses around a few TeV and are available for an LHC discovery. However the

1-loop naturalness bounds on the new bosons are not stringent enough to be interesting.

These are:

M ′W <∼ 6 TeV
( mH

200 GeV

)2
, Mφ<∼ 10 TeV (8.3)

One might try to obtain tighter bounds from estimating 2-loop contributions, but these

remain quadratically sensitive to the cutoff and thus constrain the cutoff physics rather than

the parameters of the effective theory.

Although not guaranteed by naturalness, discovery of the new particles at the Tevatron

run II is not out of the question.

9. Conclusions

Theories with a little Higgs—where the lightness of the Higgs is understood because it is

a pseudo-Goldstone Boson—provide a qualitatively new framework for physics beyond the

Standard Model. While the first examples of such models were inspired by deconstruction

and theory space, in this paper we have seen how these ideas can be generalized to yield very

economical models. The essential requirement is that the Higgs should transform nonlinearly

under a collection of symmetries, which are completely broken by a collection of spurions, but

no single spurion should break all the symmetries. We exploited this insight to present what

we believe is the minimal possible set of new symmetries and particles needed to stabilize the

weak scale against a cutoff of order Λ ∼ 10TeV, without fine tuning. We have logarithmic

sensitivity to the cutoff at one loop, and quadratic sensitivity at 2-loops, which is sufficient

to make the electroweak symmetry breaking scale of 250 GeV natural. Our philosophy here

is rather similar to that of Effective Supersymmetry [34,35] in which only the minimal set

of superpartners required for naturalness is kept lighter than the TeV scale, with all others

pushed up to 10 TeV, but our particle content at the TeV scale is much more economical.

We could eliminate all UV sensitivity to some specified number of loops, and thereby

obtain more predictivity, at the price of being less minimal—introducing larger symmetry
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groups and more particles—as was done in [14,15]. For now, however, there is no experimental

motivation to do so, as a 10 TeV cutoff is sufficient to account for the agreement of the

Standard Model with precision electroweak data.

This model is the simplest example in a new class of theories of natural electroweak

symmetry breaking, and clearly its phenomenology deserves further study. There are many

avenues for further exploration, including generalizations beyond our minimal model, calcu-

lations of precision electroweak observables, as well as possible UV completions.

Our minimal model is remarkable in providing the first example of a theory of natural

electroweak symmetry breaking with no new degrees of freedom beyond the Standard Model

beneath a TeV. This is in sharp contrast to the MSSM, where there is no reason for the Higgs

to be lighter than the superpartners. Even above a TeV, our model introduces only a very

small number of new degrees of freedom that stabilize the Higgs mass. Counting all helicity

states, the triplet scalar, massive gauge bosons and heavy fermion add a total of 30 new real

degrees of freedom beyond the Standard Model. This is smaller than the 56 new degrees of

freedom introduced in the minimal moose of our companion paper [16], and far smaller than

the 126 new degrees of freedom introduced in the MSSM, not to mention the ∼ 1000 new

degrees of freedom introduced in theories with extra dimensions at the TeV scale. Of course,

mindless minimalism is not a measure by which to judge a physical theory, but the economy

of our model does illustrate the simplicity of the underlying mechanism.

Summarizing, the broad consequences of our model are threefold:

1. Electroweak symmetry breaking without fine tuning can be realized with the particle

content of the minimal Standard Model below a TeV.

2. A small number of new, weakly coupled particles are required at a few TeV, including

at least one heavy copy of the electroweak gauge bosons and top quark, and a scalar

coupled to the Higgs.

3. The old idea of dynamical electroweak symmetry breaking can be resurrected, naturally

manifesting itself at low energies as the Standard Model with a weakly coupled light

Higgs.
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